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and the Seshadri wave in the limiting cases of our theory are forward
waves; however, the finite conductivity of the semiconductor makes
it possible to excite backward waves. When the conductivity is
increased, the discrepancy from the DE wave is first larger in smaller
wavenumber and the passband becomes broader. At N = 4, the dis-
persion curve can cross over the upper bound of the frequency
spectrum for the DE wave. As it approaches to the Seshadri wave,
the characteristic of the backward wave disappears gradually. On
the other hand, in the case of s = 41 where the surface wave propa-
gates along the interface at £ = 0, no remarkable changes of the
properties can be observed [Fig. 2(b)] and this wave is similar to
the DE wave.

The diagrams of Im (F) — |8} as shown in Fig. 3 offer the infor-
mation about the attenuation for the surface wave. Significant
interaction between the surface wave and the electrons in the semi-
conductor is expected. In the absence of a bias voltage, this inter-
action can be regarded as the dominant cause of loss for the surface
wave over the range 1 < N < 5. Furthermore, the higher conduc~
tivity makes the semiconductor so metallic that the well-known skin
effect may play an important role at N > 6. Fig. 3 implies that the
optimum coupling of spins and electrons can be attained in the
neighborhood of N = 5. In the presence of drifting carriers in the
semiconductor, the wave interaction leads to the creation of the
growing wave. It is natural that the loss for s = 41 is less than that
for s = —1 by about —20 dB.

IV. ConcLusioN

The magnetostatic surface waves in the ferrite slab adjacent to the
semiconductor have been investigated in the previous sections. Our
analytical results have pointed out that the propagation character-
istics of the surface wave are affected considerably by the finite
conductivity of the semiconductor in the absence of bias voltage.
In particular the backward waves are excited. It is believed that
optimum coupling of spins and electrons is attained in the neighbor-
hood of N = 5. If drifting carriers are present in the semiconductor,
it is anticipated that the wave interaction will result in a growing
wave, thereby providing gain. In addition, it may be possible to
construct a voltage-tuned delay line by utilizing the composite
structure constituted of YIG-film and the semiconductor.
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Abstract—Application of a coupled-mode formalism to longi-
tudinally magnetized ferrite phase shifters provides an explanation
of the increase or decrease of insertion phase with increasing mag-
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netization which is observed in different types of phase shifters. If
the higher order mode is TM, the phase shift increases with mag-
netization while the reverse happens if the higher order mode is TE.

The generalized telegraphists’ equations are used to analyze the
TEM phase shifter, The maximum phase shift that can be obtained
is determined by the effective permeability of the ferrite. However,
coupling to higher order cutoff modes reduces the phase shift
significantly.

I. INnTRODUCTION

In their classic paper Suhl and Walker [1] examined propagation
in a ferrite-filled coaxial waveguide magnetized to saturation along
the direction of propagation. They showed that, if the spacing be-
tween inner and outer conductors was sufficiently small, for the
dominant (quasi-TEM) mode the ferrite could be represented as
an isotropic lossless medium with an effective permeability given by
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Hetf = (1a)
where
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and
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are the elements of the Polder tensor [2]
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o = (27v) (4xM,)
wo = (2wy)Ho
where
w microwave radian frequency;

4rM, ferrite saturation magnetization;

H, external dc magnetic field;

v 2.8 MHz/Oe;

Ko permeability of free space equals 47 X 1077 H/m.

Through symmetry arguments they also showed that the same result
was valid for propagation in a longitudinally magnetized ferrite
contained between perfectly conducting parallel planes, in the limit
of small spacing between the planes.

In this paper, longitudinally magnetized ferrites in guided wave
structures are examined. Coupled-mode theory is employed to gain
insight into the general characteristics of such structures. A detailed
analysis of the TEM phase shifter is undertaken to examine the
variation of effective permeability and hence, phase shift, with
plate spacing.

II. CouprLeED-MODE THEORY

In this section we describe how differential phase shift is obtained
in longitudinally magnetized ferrite structures. We approach the
problem from the viewpoint of mode coupling between the dominant
mode and cutoff modes capable of storing electromagnetic energy.
This type of analysis has successfully predicted the behavior of the
Faraday rotation phase shifter [3] and is the only plausible explana-
tion of the Reggia—Spencer phase shifter [4]-[6].

Since the anisotropy of (2) exists only in the transverse plane,
we may define a transverse tensor permeability as

v —jx
Bo= Mo[ ] . )
jx m

Now consider two transmission lines which are nonreciprocally
coupled by this medium. If V; and I1 represent the uncoupled volt-
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age and current on line 1, and subscript 2 represents the same quan-
tities on line 2, then the voltages and currents on the coupled lines
satisfy the following matrix differential equations (assuming eiw?
time variation) [77]:

7 -

=

~7f
-¥v

(4a)
(4b)

where V and T are column vectors of voltage and current, and the
prime denotes differentiation with respect to z. The series imped-

ance matrix is
_ Zy, —§Zn
§Zm 2

where the nonreciprocal coupling is represented by the off-diagonal
elements +jZ,.. The shunt admittance matrix is

- [Y1 Ya
P, ]
Yo Y2

where the capacitive coupling between the lines has been assumed
to be reciprocal. The relationship between p and Z, and « and Z,
remains to be determined after the field expressions for the partic-
ular structure have been developed.

From (4a) and (4b) we obtain the second-order matrix differ-
ential equations

(5a)

(5b)

7o BT =0

with K2 = ZY and the dagger indicating Hermitian conjugation
of the matrix. Assuming solutions of the form e~ yield the eigen-
value equation

K — y2F =0 (6)

where F is the unit niatrix. Substitution of (5a) and (5b) into (6)
yields

)Yy + Z,Y,
2

7Y Z3.Y\? /2
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From transmission-line theory we note
‘Yl = ZlYl 722 = ZzYz.

Substitution of these into (7) and rearrangement yields

2 2 2 — 2\ 2 1/2
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where
Zm

b = ——m =
(Z,Z,) V2 ke

Y
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are the usual definitions of magnetic and electric coupling coeffi-
cients. Note that since all quantities in (8) appear as even powers,
the propagation constant is independent of the sign of either Z,
or Y., and reciprocal propagation is obtained. The term in (8) that
produces variable phase shift is vi2y.2(1 — k2)k.? which may be
written as Y1Y,(1 — k2)Z,2 Since k2 is constant for magnetic
coupling, only the mutual impedance Z,, can vary with the state of
magnetization of the ferrite.

Assuming a lossless medium, the mode admittance Y, is imaginary
and may be either positive or negative depending upon the type of
mode and whether the mode is above or below cutoff. The signs of
the series impedances and shunt admittances for waveguide modes
are listed in Table I. If mode 1 in (8) is propagating (1% = —B:?)
and mode 2 is cutoff (y:2 = o? in the absence of coupling) then:
1) the insertion phase increases as Z, increases if mode 2 is TM
(Reggia—Spencer phase shifter) ; and 2) the insertion phase decreases
as Z,, increases if mode 2 is TE (TEM phase shifter). The behavior
predicted here has been experimentally observed for the Reggia—
Spencer phase shifter [4] and for a TEM-like phase shifter [8].
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TABLE 1
Siens oF WAVEGUIDE SERIES IMPEDANCE AND SHUNT ADMITTANCE
TEM TE-like TM-like
Above cutoff —jZ; > 0 —jZ; > 0 —jZ; > 0
(2 < 0) —3¥: >0 —3¥: >0 —7Y: >0
Below cutoff —3Z; > 0 —j4; <0
(>0 —jY: <0 —3Y: >0

In the next section this theory is applied in a more detailed fashion
in order to obtain insight into the operation and limitations of the
TEM phase shifter.

II1. Courrep-MobE THEORY OF THE TEM PHASER

For simplicity we model the TEM phaser as a parallel-plate
waveguide fully filled with a longitudinally magnetized ferrite
medium. The dominant mode is taken as the TEM mode of the
empty waveguide. The higher order modes are taken to be the TEq,
modes of the parallel-plate waveguide. For this case substitution
into the generalized telegraphists’ equations, as derived by Schel-
kunoff [97, yields the coupled transmission-line equations

dV aT aT
— = —jouuely — wpok 2 I, // -

dz ay a?/
% = —jweVy
o 2 Vn/ ®

Here V, and I, are the equivalent voltage and current of the TEM
mode, and V. and I, are equivalent voltages and currents which
represent the transverse fields of the THg, modes. The mode func-
tions and cutoff wavenumbers are defined by

1
To = (ab)i2 y
ob\1/2 1
T = (—) —cosﬂy
a mm b
mar
- = —— 10
X b (10}

where b is the plate separation and @ is a unit width in the z direc-
tion. Since the parallel-plate waveguide is infinite in the z direction,
no variation with z is allowed in the mode functions. The integrals
in (9) are taken over the rectangular cross section (¢ X b). Evalu~
ation of these integrals leads to the series-impedance and shunt-
admittance matrices:
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where ¢ = €€ is the permittivity of the ferrite and k? = w2uce.
Forming the K? matrix and substituting into (6) gives
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Expansion of (13) yields the following equation for the eigen-
values:

(_52)_,,2 s — ™ .o 14
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where

|2 Xn?
12 = — K,
™

If only the TEqy mode is coupled to the TEM mode, this reduces to
the biquadratic equation

<%) - (5)2 [ 4+r)] 4+ —a?) =0.

A polynomial equation of order n in (B8/k)? results when n — 1
higher order modes are coupled to the TEM mode. The largest
positive value of 82 obtained from the solution to (14) or (15) is
the propagation constant of the dominant coupled mode.

By changing the magnetization of the ferrite, hence p and «,
variable phase shift is obtained. We define the normalized differ-
ential phase shift as

(15)

AB B — B

g
Bo Bo Bo

where 3 is the propagation constant in the magnetized state and 8,
is the propagation constant in the demagnetized state.

When the applied field is zero, as is the case for latched operation,
the Polder tensor is no longer valid. For the partially magnetized
state Schlomann has recently shown [10]

-1 (16)
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Fig. 1. Normalized differential phase shift as a function of frequency
comparing several degrees of approximation with the uesr limit.

where

M, saturation magnetization;
M, remanent magnetization;
M  magnetization.

The propagation constant in the demagnetized state is given by
Bo = K (pa)"2
The differential phase shift of (16) is then

A _ (a8 _ B
bo Bol ke (ua)i

where [ is the length of the device.

The negative of (19) is plotted in Fig. 1 for a 0.050-in plate
spacing. Here we show the 2-mode and the 3-mode approximations
as well as the uesr limit determined from (1a). In the limit of low
frequencies (far from the cutoffs of the higher order modes) the
approximations should approach the ues; limit since the assumption
of small plate spacing is better satisfied here. Apparently, it is
necessary to couple even more modes to more nearly represent the
true field distribution in the parallel-plate waveguide. Notice in
(11) the presence of the factor 82/x in all the mutual series im-
pedances. This term results from the integration of the product of
the linear mode function of the TEM mode and the sinusoidal mode
function of the TE; modes. As shown in the Appendix a more
efficient quadratic approximation is given by (A5). The results of
this approximation are shown in Fig. 1 and denoted as the TEM
approximation. For very thin spacings (<0.025 in) the results of
(A5) are indistinguishable from the u.¢r limit at low frequencies.

The TEM approximation, (A5) was used to investigate the effects
of plate spacing on differential phase shift. The results are shown
in Fig. 2. From this we see that, as the cutoff frequency is reduced
(plate spacing is increased), the normalized differential phase shift
deviates drastically from the wess limit and for some cases goes
through zero and takes on negative values. Thus a given phaser
configuration can exhibit either positive or negative differential
phase shift depending upon the frequency of operation. The occur-
rence of positive and negative phase shift in TEM phasers depend-
ing upon plate spacing and frequency has been noted by Brodwin
[11]and Buck [127. The frequency of the zero crossing is dependent
upon the height of the waveguide and the magnetization of the
ferrite.

19)

IV. CoNCLUSION

The effect of a nonreciprocal gyromagnetic medium on the cou-
pling between two guided wave modes, one propagating and one



138

0.28
0.26
0.24

)
o

0.22
0.20

0.06
0.04
0.02

NORMALIZED DIFFERENTIAL PHASE SHIFT

0.00

-0.02

-0.04

FREQUENCY f [N GHz

Fig. 2. Normalized differential phase shift as a function of frequency

with plate spacing as the parameter.

cutoff, is to produce variable insertion phase which changes with
the mutual series-impedance term. The insertion phase increases
if the cutoff mode is TM-like and decreases if the cutoff mode is
TE-like. This points out the fundamental difference between the
Reggia—Spencer and the TEM phase shifters.

The TEM phase shifter was analyzed by applying the generalized
telegraphists’ equations in order to evaluate the effects of coupling
to many higher order modes. A quadratic approximation was found
which demonstrates the reduction in phase shift from the g limit,
which is caused by coupling to higher order modes. When kb = 1
this reduction is negligible. The frequency dependence of the differ-
ential phase shift will always be greater than that given by the uess
limit. Furthermore, positive and negative phase shifts can occur in
different frequency ranges for the TEM device depending upon
plate spacing.

APPENDIX

The polynomial equation for the eigenvalues is given by (14)
and is repeated here for convenience

m) : 3 Tn -0 (A1)
14 %2 a1z e 7712(#7'7; _ Bz/kz) = L.

When the plate spacing approaches zero, the r, approach infinity
and (A1) reduces to

iz 8 k2 ® 1
-Z)-2Z 3 =—=o
(.U kz) TEU n=1.3,5, N2

Solution of this yields

(A2)

J R
B .
which is the expression derived by Suhl and Walker [17].

A better two-mode approximation than (15) in the text is obtained
by rewriting (Al) as

(A3)

= Heff

- _2 — a2? n as? E = =0
P g Y — @/ i n (e — B

(Ad)

If only the dominant mode is of interest, 8/k < 1 and the last
term of (A4) may be written

- 7 kil 1 a 2
w3 L. § L _afe
n=3,5,7,+» N2 (ury, — B2/k2) n=g,5 7,0+ N2 u \8
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Substituting this result into (A4) yields the biquadratic equation

8\ glur— s W — x?
(l}) - E[T + ury + ‘;—] +;m(—u—> = 0.

which is the desired result.

(A5)
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Experimental and Ct;mputed Four Scattering and Four
Noise Parameters of GaAs FET’s Up to 4 GHz
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Abstract—The four scattering parameters, operating in the pinch-
off mode, of a Schottky-barrier-gate FET (MESFET) are investi-
gated with the aid of an appropriate equivalent circuit. The depend-
ence of the electron drift velocity on the electric field of the channel
has been simplified to be piecewise linear by Turner and Wilson.
Hot electron effects have therefore been neglected. The four noise
parameters of the device have also been computed using the noise
sources of van der Ziel. All computed parameters are compared with
their measured values in the frequency region 0.5-4 GHz. Investi-
gated GaAs FET’s are commercial units.

I. InTRODUCTION

An appropriate equivalent circuit of a GaAs FET valid up to
4 GHz is presented here. The channel of this transistor is n-doped,
with a carrier concentration of about 3 X 10% em~%. The gate length
of the device is about 4 ym and the channel width is about 360 pm.
The GaAs FET is mounted in a microstrip package with three
terminals. The equivalent circuit of such an FET valid up to 4 GHz
has been computed using a computer-aided optimization program,
based on the classical gradient method. The established network
equations have been analyzed using the syMBAL computer language
[8]. Theoretical work on noise in FET’s has been described by van
der Ziel [2], [3] and Leupp and Strutt [97]. These data have been
applied to the intrinsic GaAs FET without any modification.

The computations on the small-signal behavior as well as on the
noise behavior, 1.e., the four scattering parameters and the four noise
parameters, have been made neglecting hot electron effects [157,
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